# Multifunctional Power Instrument (LCD)



**Operational Instruction Manual** 

# **CATALOG**

| Chapter 1. | Product Function                  | . 1 |
|------------|-----------------------------------|-----|
| Chapter 2. | Technical Parameters              | . 1 |
| Chapter 3. | Program and Usage                 | . 3 |
| Chapter 4. | Installment and wiring            | . 9 |
| Chapter 5. | Communication protocol.           | 1′  |
| Chapter 6. | Switch value module               | 17  |
| Chanter 7  | Analog transmitting output module | 20  |

# Multifunctional Power Instrument(LCD)

Please read through the manual before installment and operation

## Chapter 1. Product Function

#### Ordinary function

Phase voltage: UA, UB, UCLine voltage: UAB, UBC, UCA

•Current: IA, IB, IC

•Active power: phase active power and total active power

•Reactive power:phase reactive power and total reactive power

Apparent power: phase apparent power and total apparent power

Power factor: phase power factor and total power factor

Frequency

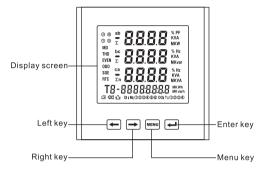
Active electric energy

Reactive electric energy

•Communication output: RS485

#### Extended function

- •4 channels analog quantity output
- •4 channels switch value output
- •4 channels switch value input

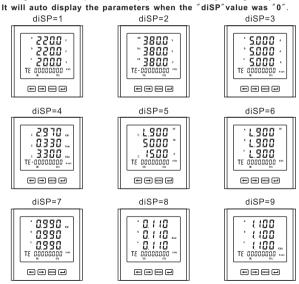

# Chapter 2. Technical Parameters

| Tech  | nnical parame | eters       | Index                                             |  |  |
|-------|---------------|-------------|---------------------------------------------------|--|--|
|       | Net           | work        | Three-phase three-wire, three-phase four- wire    |  |  |
|       |               | Rated value | AC 0~500V                                         |  |  |
|       | Voltage       | Over load   | Consistent: 1.2 times instantaneous: 2 times /30s |  |  |
|       | voltage       | Comsumption | <0.5VA(each phase)                                |  |  |
| Input |               | Impedance   | >500kΩ                                            |  |  |
|       |               | Rated value | AC 1A, 5A                                         |  |  |
|       | Current       | Over load   | Consistent: 1.2 times instantaneous: 2 times /1s  |  |  |
|       |               | Impedance   | <2mΩ                                              |  |  |
|       | Frequency     |             | 45~65Hz                                           |  |  |

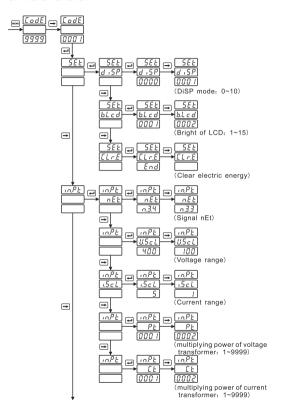
|                       |                      | Output mode        | RS485                                         |  |  |
|-----------------------|----------------------|--------------------|-----------------------------------------------|--|--|
|                       | Communication        | Protocol           | MODBUS_RTU                                    |  |  |
|                       |                      | Baud rate          | 1200,2400,4800, 9600                          |  |  |
|                       |                      | Channel quantity   | 4 channels                                    |  |  |
|                       | Analog<br>quantity   | Output mode        | 0~20mA, 4~20mA                                |  |  |
| Output                |                      | Load ability       | ≤400Ω                                         |  |  |
|                       |                      | Channel quantity   | 4 channels                                    |  |  |
|                       | Switching<br>value   | Output mode        | Normally open relay contact output            |  |  |
|                       |                      | Contact capability | AC 250V/0.1A                                  |  |  |
|                       | Switchir             | ng value input     | Four channel dry contact input modes          |  |  |
|                       | Disp                 | olay mode          | LCD(Blue back lighting)                       |  |  |
|                       | Volta                | ge, current        | ±(0.5%FS+one digit)                           |  |  |
|                       | Active power         | er, reactive power | ±(0.5%FS+one digit)                           |  |  |
|                       | Fr                   | equency            | ±0.1Hz                                        |  |  |
| Measuring<br>accuracy | Pov                  | ver factor         | ±0.01PF                                       |  |  |
|                       | Acti                 | ve energy          | ±0.5%(only for reference, not for meterage)   |  |  |
|                       | Reac                 | tive energy        | ±1.0%(only for reference, not for meterage)   |  |  |
| Power                 |                      | Scope              | AC 220V 50/60Hz or AC/DC 85~265V              |  |  |
| Fower                 | Cor                  | sumption           | <5VA                                          |  |  |
|                       |                      | Input and sourse   | >2kv50Hz/1min                                 |  |  |
| Safety                | Withstand<br>voltage | Input and output   | >1kv50Hz/1min                                 |  |  |
| Salety                |                      | Output and sourse  | >2kv50Hz/1min                                 |  |  |
|                       | Insulati             | ng resistance      | Any two of input, output, source, casing>20MΩ |  |  |
|                       | Ton                  | nperature          | Operation:-10~50°C                            |  |  |
| Environment           | 1611                 | iiperature         | Storage:-25~70°C                              |  |  |
| Liviionment           | Н                    | umidity            | ≤85%RH, free of wet and corrosive gas         |  |  |
|                       | Е                    | levation           | ≤3000m                                        |  |  |

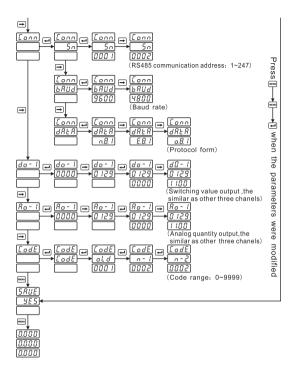
# Chapter 3. Program and usage

#### 3.1 Panel description




## 3.2 Description of key function


- Left key: Under the programming mode, it is used for progressive decrease of parameter value or inter the previous menu. Under the measuring display mode, it is used to enter the previous display mode.
- Right key: Under the programming mode. it is used for degressive increase of parameter value or inter the next menu. Under the measuring display mode, it is used to enter the next display mode.
- Menu key: under the measuring display status, press this key to enter the program mode. After input the correct password(factory password: 0001) "Code" prompted by the instrument, it is capable of programming and setting. Under the programming mode, it is used to return to previous menu with storing parameters. The instrumen willing display "SAVE-YES" when it return to the measuring display mode from the programming mode, then press the Menu key to save and qiut.
- Enter key: Under the programming mode, it is used to return to the previous menu when choosing the menu items.


#### 3. 3 Description of display mode

Through programming on the "diSP" parameters of the menu, it can choose one of the display mode and also can manually switch the display modes by Right key and Left key. "dISP" value display mode: 1, three-phase phase voltage, positive active energy; 2. three-phase line voltage, opposite active energy: 3, three-phase current, positive reactive energy 4, total active, reactive. apparent power, opposite reactive energy; 5. total power factor, frequency, total current, positive active energy; 6. three-phase power factor, positive active energy: 7, three-phase active power, positive active energy: 8, threephase reactive power, positive active energy; 9. three-phase apparent power, positive reactive energy. Under the display mode, switch the display object among the different parameters by press the Left key or Right key.



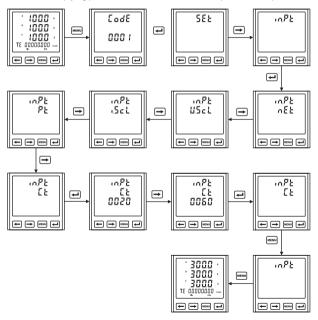
#### 3.4 Menu framework





# 3.5 Menu significations

Under the programmable mode, four menu setting items including of setting (SEt), input(inPt), communication(Conn), switching value output(do1-4), annlog quantity(Ao1-4), modify password(CodE)and LCD display hierarchical menu


framework management are provided in this instrument. Row 1 displays the first-tier menu; row 2 displays the second-tier menus; row 3 displays the parameter value.

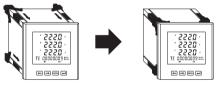
| First-tier<br>menu | Second-tier<br>menu | Parameter value         | Description                                                                                                                                                                    |  |  |
|--------------------|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CodE               |                     | 0~9999                  | Prompt the input programmable password is codE, and can only enter the programmable mode with correct password.(Factory CodE:0001)                                             |  |  |
|                    | d .5P               | 0~10                    | Select display mode "diSP"                                                                                                                                                     |  |  |
| SEŁ                | L c d.E             | 1~15                    | Backlight display time, unit:min, 0:always lighting                                                                                                                            |  |  |
|                    | [Lr.E               | End                     | Pressing" Enter key"to clear the electric energy data of the instrument                                                                                                        |  |  |
|                    | ინხ                 | n.3.4<br>n.3.3          | Select input network "nEt",n.3.3: three-phase three-wire n.3.4: three-phase four-wire                                                                                          |  |  |
|                    | U.5 c L             | 400V<br>100V            | Select measuring range of voltage: 400V or 100V                                                                                                                                |  |  |
| in.PE              | 1.5 c L             | 5A/1A                   | Select measuring range of current: 5A or 1A                                                                                                                                    |  |  |
|                    | PΕ                  | 1~9999                  | Set multiplying power of voltage transformer (Primary value/second value of voltage transformer)                                                                               |  |  |
|                    | ٤٤                  | 1~9999                  | Set multiplying power of current transformer (Primary value/second value of current transformer)                                                                               |  |  |
|                    | S'n                 | 1~247                   | Set RS485 communication address "Sn"                                                                                                                                           |  |  |
| [000               | PBN9                | 9600                    | Select communication baud rate"bAud":1200,2400,4800 or 9600                                                                                                                    |  |  |
|                    | 48F8                | n.8 1<br>o 8 1<br>E 8 1 | Protocol form   n.8.1:n-no check, 8-eight data bits, 1-one stop bit o.8.1:o-odd check, 8-eight data bits, 1-one stop bit E.8.1:o-even check, 8-eight data bits, 1-one stop bit |  |  |
| do-1               | 0~255               | 0~9999                  | Select the first-channel alarm output object , and set the higher and lower limit of alarm output range                                                                        |  |  |
| Ro-1               | 0~255               | 0~9999                  | Select the first-channel transmitting output object , and set the higher and lower limit of transmitting output range                                                          |  |  |
|                    | orq                 | 0~9999                  | Current code                                                                                                                                                                   |  |  |
| CodE               | n- !                | 0~9999                  | Input new code first time                                                                                                                                                      |  |  |
|                    | u - 5               | 0~9999                  | Input new code second time                                                                                                                                                     |  |  |

#### 3.6 Programming operation examples

The measuring range of instruments has been set as the same parameters provided by users at the factory. Users should check if the input network, voltage/current measuring range and transformer multiplying power are consistent with the actual input again before use.

# 3.6.1 Set multiplying power of current transformer is 60(CT 300A/5A)




# Chapter 4. Installment and wiring

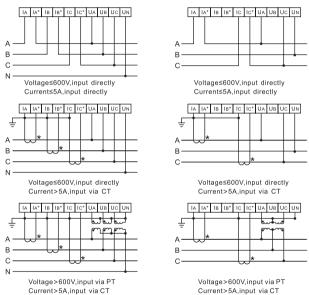
#### 4.1 Shape and cutout hole dimension(unit:mm)

| Shape         | Panel dimension |     | Cas | e dimen | Cutout hole dimension |     |     |
|---------------|-----------------|-----|-----|---------|-----------------------|-----|-----|
| Silape        | W               | Н   | W   | Н       | D                     | W   | Н   |
| 120×120Square | 120             | 120 | 110 | 110     | 83                    | 112 | 112 |
| 96×96Square   | 96              | 96  | 90  | 90      | 83                    | 92  | 92  |
| 80×80Square   | 80              | 80  | 74  | 74      | 83                    | 76  | 76  |
| 72×72Square   | 72              | 72  | 66  | 66      | 83                    | 68  | 68  |

#### 4.2 Method of installation

Choose the corresponding hole cutout dimension according to the instrument dimension from the table above, make a hole in the installation screen, insert the instruments into the hole, place the four clamping pieces into the clamping holder and push and tighten them by hand.




# 4.3 Terminal arrangement and function declaration of instrument.

(Note: If it is not the same with the wiring schema of the instrument case, please accord to the one of instrument case.)

- 4.3.1 Auxiliary power supply(POWER): The voltage range of operational power supply is AC 220V 50/60Hz or AC/DC 85~265V. It is suggested to install a fuse of 1A beside of the live wire when using the AC supply to prevent the damage to the instrument. In the areas with poor power quality, the surge suppressor and quick pulse group suppressor should be installed in the power supply circuit.
- 4.3.2 Electrical quantity signal input(I input and U input): I input is A, B and C three-phase AC current signal input port and U input is A, B and C three-phase AC voltage signal input port. I\* is current inlet wire. When connection, please ensure the phase sequence and polarity of input signal respond with the terminals

to avoid indicating value error. When the voltage is higher than the rated input voltage of the product, you should consider of using PT and installing fuse of 1A at the voltage input port; while the current is higher than rated input current of the product, you should consider of using the exterior CT.

# 4.3.3 Typical connection



#### 4.3.4 RS485 communication connection

The instrument supplies a RS485 communication interface and applies MODBUS\_RTU communication protocol. Up to thirty-two instrument can be connected in one communication line at one time. Each instrument should have

the only communication address in the circuitry. Communication connection should use the shielded twisted paired with copper mesh, whose diameter should be not less than 0.5mm. Communication line should be far away from the high-voltage cables or other highfield environment and the maximum transmission distance is 1200 m. The typical network connections are shown in the following figure and users can choose other suitable connect mode under specific conditions.

- $4.3.5~Switching~value~input\\(DI~input):DI1~DI4~are~1~4~way~dry~contact~input~port,\\ inside~of~the~instrument there~is~power~supply~of~+5V$
- 4.3.6 Switching output and ananlog transmitting output: can support four-channel switching value output and four-channel analog transmitting output.

# Chapter 5. Communication protocol

5.1 This series instrument are provided with Rs485 communication interface and apply MODBUS\_RTU communication protocol.

| Start                         | Address<br>code | Address Function Data code code Sector C |        | CRC code | End                              |  |
|-------------------------------|-----------------|------------------------------------------|--------|----------|----------------------------------|--|
| Halt time more than 3.5 bytes | 1 byte          | 1 byte                                   | N byte | 2byte    | Halt time more<br>than 3.5 bytes |  |

#### 5.2 Communication message transmitting process

When communication instructions transmit from master device to slave device, the slave device with corresponding address code receives communication orders and reads the massage according to functional code and relational requirements. After successful CRC verification without error, the corresponding operation will be conducted and the result (data), including address code, function code, data after execution and CRC verification code, is returned to the master device. In case of CRC verification failure, no message would be returned.

#### 5. 2. 1 Address code:

Address code is the first byte (8 bits) of each communication message frame, from 1 to 247. Every slave device must have the only address code and only the slave device conforming to the address code can respond and return the message. When the slave device returns the message, all of the return data start with each address code. The address code sent by master device shows the receiving address

of slave device, while the address code returned by slave device shows the returning slave address. The responding address code shows where the message comes from

#### 5. 2. 2 Function code

Function code is the second byte of each communication message frame. The master device sends and tells that what operation the slave device should carry out by means of function code. Then the slave device responds. The functional code returned by slave device is the same as the one sent by master device, which shows that slave device has responded the master device and carry out the relational operation. The instrument supports three function codes as following:

| Function code                                      | Operation                                   |
|----------------------------------------------------|---------------------------------------------|
| 03H/04H Read data of single or multiple resignster |                                             |
| 05H                                                | Remote control single relay action          |
| 0FH                                                | Remote control multiple relay action        |
| 10H                                                | write data of single or multiple resigister |

#### 5.2.3 Data sector

Data sector are different following the different function code. These data could be numerical value, reference address and son on. For different slave device, the address and data information are different (There should be communication information table). The master device utilizes the communication order (Function code03H) to read and amend the data register of the slave device. The data length read out or written in should not exceed the effective range of the data register address once

# 5. 3 16-bit CRC verification code

#### Algorithm of CRC code:

- 5.3.1 Presetting a 16-bit register to hex FFFF (namely 1 for all bits in binary system). The register is called CRC register;
- 5.3.2 XORing the first 8-bit binary data (the first byte of the communication message frame) with the low 8-bit of 16-bit CRC register, then storing the result in CRC register;
- 5.3.3 Right-shifting the register data by one bit (towards lower bit) and filling the highest bit with 0, then verificationing the shift-out bit;
- $5.3.4\ lf\ the\ shift-out\ bit\ is\ 0,\ repeat\ step\ 3\ (right-shifting\ one\ more\ bit); lf\ the\ shift-out\ bit\ is\ 1,\ XOR\ the\ CRC\ register\ data\ with\ polynomial\ A001\ (1010\ 0000\ 0000\ 0001);$
- 5.3.5 Repeating step 3 and step 4 until all of the 8-bit data have been processed

- after 8 right-shift operations;
- 5.3.6 Repeating step 2 to step 5 to process the next byte of the communication message frame:
- 5.3.7 When calculation procedures of the first 5 bytes in the communication message frame are completed, the 16-bit CRC verification code will be generated in the 16-bit CRC register.

#### 5.4 Communication messages Example

#### 5.4.1 Read data register value(Function code:03H/04H)

Master device request: read three phase current value

| Address          | Function | Staring register address | Register number | Check code |  |  |
|------------------|----------|--------------------------|-----------------|------------|--|--|
| 01H 03H 00H, 45H |          | 00H, 45H                 | 00H, 06H        | D4H, 1DH   |  |  |

#### Slave device response:

IA=43556680H(213. 4A), IB=43203040H(213. 4A), IC=42DDCC80H(213. 4A)

| Address Function Data length |  | Data length | Data                            | Check code |  |
|------------------------------|--|-------------|---------------------------------|------------|--|
| 01H 03H 0CH                  |  | 0CH         | 43556680H, 43203040H, 42DDCC80H | B5H, DBH   |  |

# 5.4.2 Remote single relay action(Function code:05H): 4 relay address0~3 Master device request: remote single relay output

| Add | dress | Function | Register address | Register value | Check code |
|-----|-------|----------|------------------|----------------|------------|
| 0   | 1H    | 05H      | 00H, 00H         | FFH, 00H       | 8CH, 3AH   |

# Slave device response:

|  | Address Function Register address 01H 05H 00H, 00H |  | Register address | Register value | Check code |  |  |
|--|----------------------------------------------------|--|------------------|----------------|------------|--|--|
|  |                                                    |  | 00H, 00H         | FFH, 00H       | 8CH, 3AH   |  |  |

# 5.4.3 Remote multiple relay action(Function code:0FH): 4 relay address0~3 Master device request: remote 1st and 3rd relay output, 2nd and 4th in off

| imaster device request: remote 1st and 5rd relay output, 2nd and 4th in on |          |                          |                 |            |                |            |  |
|----------------------------------------------------------------------------|----------|--------------------------|-----------------|------------|----------------|------------|--|
| Address                                                                    | Function | Staring register address | Register number | Data bytes | Register value | Check code |  |
| 01H                                                                        | 0FH      | 00H, 00H                 | 00H, 04H        | 01H        | 05H            | FEH, 95H   |  |

#### Slave device response:

| Address | Address Function Staring register address |          | Register number | Check code |  |
|---------|-------------------------------------------|----------|-----------------|------------|--|
| 01H     | 0FH                                       | 00H, 00H | 00H, 04H        | 54H, 08H   |  |

# 5.4.4 write data register(funtion code: 10H):

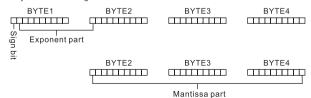
master device request: set current rate CT=300, voltage rate PT=100

| Address | Function | Staring register address | Register number | Data bytes | Data segment    | Check code |
|---------|----------|--------------------------|-----------------|------------|-----------------|------------|
| 01H     | 10H      | 00H, 02H                 | 00H, 02H        | 04H        | 00H,64H,01H,2CH | 33H, E4H   |

#### Slave device response:

| Address | Function | Staring register address | Register number | Check code |
|---------|----------|--------------------------|-----------------|------------|
| 01H     | 10H      | 00H, 02H                 | 00H, 02H        | E0H, 08H   |

# 6.5 MODBUS\_RTU address information form(the address is demonstrated with decimal system). Indicate: R/W-read and write, R-only read.


| Address         | Parameter               | Description                                   | Data type   | Attribute    | Explanation                    |  |  |  |  |  |
|-----------------|-------------------------|-----------------------------------------------|-------------|--------------|--------------------------------|--|--|--|--|--|
|                 | Programming information |                                               |             |              |                                |  |  |  |  |  |
| 0 Code Password |                         |                                               | Short       | R/W          | Range: 0~9999                  |  |  |  |  |  |
| 1               | disp                    | Display mode                                  | Short       | R/W          |                                |  |  |  |  |  |
| '               | in.Pt                   | Connection mode                               | Short       | R/W          | Range,0:3P3W,1:3P4W            |  |  |  |  |  |
| 2               | PT                      | Multiplying power of<br>potential transformer | Short       | R/W          | Range: 1~9999                  |  |  |  |  |  |
| 3               | СТ                      | Multiplying power of<br>current transformer   | Short       | R/W          | Range: 1~9999                  |  |  |  |  |  |
| 4               | Sn                      | Communication address                         | Short       | R/W          | Range: 1~247                   |  |  |  |  |  |
| 4               | bAud                    | Communication baud rate                       | SHOIL       | R/W          | Range0:1200bps~3:9600bps       |  |  |  |  |  |
| 5               | dAtA                    | Protocol form                                 | Short       | R/W          | 0:n.8.1 1:o.8.1 2:E.8.1        |  |  |  |  |  |
| 6               | Lcd.t                   | Backlight                                     | Short       | R/W          | Range: 0~9999                  |  |  |  |  |  |
| 7               | CLr.E                   | Clear energy data                             | Short       | R/W          |                                |  |  |  |  |  |
|                 |                         | Switch value                                  | output, and | alog quantit | y output                       |  |  |  |  |  |
| 8               | DO1-Addr                | Switch value output 1                         | Short       | R/W          |                                |  |  |  |  |  |
| 9               | DO1-Data                | Owner value output 1                          | Short       | R/W          |                                |  |  |  |  |  |
| 10              | DO2-Addr                | Switch value output 2                         | Short       | R/W          |                                |  |  |  |  |  |
| 11              | DO2-Data                | Owiton value output 2                         | Short       | R/W          | Chapter 8. Switch value module |  |  |  |  |  |
| 12              | DO3-Addr                | Switch value output 3                         | Short       | R/W          | Chapter o. Switch value module |  |  |  |  |  |
| 13              | DO3-Data                | Ownton value output 3                         | Short       | R/W          |                                |  |  |  |  |  |
| 14              | DO4-Addr                | Switch value output 4                         | Short       | R/W          |                                |  |  |  |  |  |
| 15              | DO4-Data                | Omiton value output 4                         | Short       | R/W          |                                |  |  |  |  |  |

| 16    | AO1-Addr | Analog quantity output 1  | Short        | R/W          |                                                                         |
|-------|----------|---------------------------|--------------|--------------|-------------------------------------------------------------------------|
| 17    | AO1-Data | Analog qualitity output 1 | Short        | R/W          |                                                                         |
| 18    | AO2-Addr | Analog quantity output 2  | Short        | R/W          |                                                                         |
| 19    | AO2-Data | Analog quantity output 2  | Short        | R/W          | Chapter 9. Analog quantity module                                       |
| 20    | AO3-Addr | Analog quantity output 3  | Short        | R/W          | Chapter 5. Analog quantity module                                       |
| 21    | AO3-Data | Analog quantity output 5  | Short        | R/W          |                                                                         |
| 22    | AO4-Addr | Analog quantity output 4  | Short        | R/W          |                                                                         |
| 23    | AO4-Data | Analog quantity output 4  | Short        | R/W          |                                                                         |
| 24-46 |          |                           | Re           | serve        |                                                                         |
|       |          | Po                        | wer sign in  | formation    |                                                                         |
| 47    | SING     | SING                      | Short        | R            |                                                                         |
|       |          | Data of sw                | itch value a | nd electrica | l quan                                                                  |
| 55    | DI       | Switch value input        | Short        | R            | Switch value input part                                                 |
| 56    | DO       | Switch value output       | Short        | R            | Switch value output                                                     |
| 57,58 | UA       | A-phase voltage           | Float        | R            |                                                                         |
| 59,60 | UB       | B-phase voltage           | Float        | R            |                                                                         |
| 61,62 | UC       | C-phase voltage           | Float        | R            |                                                                         |
| 63,64 | UAB      | AB-line voltage           | Float        | R            |                                                                         |
| 65,66 | UBC      | BC-line voltage           | Float        | R            |                                                                         |
| 67,68 | UCA      | CA-line voltage           | Float        | R            | 2 bytes (4 bytes) floating-point                                        |
| 69,70 | IA       | A-phase current           | Float        | R            | representation data, IEEE-754                                           |
| 71,72 | IB       | B-phase current           | Float        | R            | data format standard. All data is<br>primary data, then by the ratio of |
| 73,74 | IC       | C-phase current           | Float        | R            | the value. The unit of voltage V,                                       |
| 75,76 | PA       | A phase active power      | Float        | R            | The unit of current A, active power unit KW.reactive power unit Kvar.   |
| 77,78 | PB       | B phase active power      | Float        | R            | apparent power unit KVA, the unit                                       |
| 79,80 | PC       | C phase active power      | Float        | R            | of frequency Hz.                                                        |
| 81,82 | PS       | Total active power        | Float        | R            |                                                                         |
| 83,84 | QA       | A phase reactive power    | Float        | R            |                                                                         |
| 85,86 | QB       | B phase reactive power    | Float        | R            |                                                                         |
| 87,88 | QC       | C phase reactive power    | Float        | R            |                                                                         |
| 89,90 | QS       | Total reactive power      | Float        | R            |                                                                         |
|       |          |                           |              |              |                                                                         |

| 91,92   | SA  | A-phase apparent power             | Float       | R           |                                                                         |  |  |
|---------|-----|------------------------------------|-------------|-------------|-------------------------------------------------------------------------|--|--|
| 93,94   | SB  | B-phase apparent power             | Float       | R           | 2 bytes (4 bytes) floating-point                                        |  |  |
| 95,96   | SC  | C-phase apparent power             | Float       | R           | representation data, IEEE-754                                           |  |  |
| 97,98   | SS  | Total apparent power               | Float       | R           | data format standard. All data is<br>primary data, then by the ratio of |  |  |
| 99,100  | PFA | A-phase power factor               | Float       | R           | the value. The unit of voltage V,                                       |  |  |
| 101,102 | PFB | B-phase power factor               | Float       | R           | The unit of current A, active power unit KW, reactive power unit Kvar,  |  |  |
| 103,104 | PFC | C-phase power factor               | Float       | R           | apparent power unit KVA, the unit                                       |  |  |
| 105,106 | PFS | Total power factor                 | Float       | R           | of frequency Hz.                                                        |  |  |
| 107,108 | FR  | Frequency                          | Float       | R           |                                                                         |  |  |
| 109,128 |     |                                    | Re          | serve       |                                                                         |  |  |
|         |     | elec                               | tric energy | information |                                                                         |  |  |
| 129,130 | WPP | Primary positive active energy     | Float       | R           |                                                                         |  |  |
| 131,132 | WPN | Primary opposite active energy     | Float       | R           | 2 bytes (4 bytes) floating-point representation data, IEEE-754          |  |  |
| 133,134 | WQP | Primary positive reactive energy   | Float       | R           | data format standard.All data is                                        |  |  |
| 135,136 | WQN | Primary opposite reactive energy   | Float       | R           | primary data, then by the ratio of the value. The unit of voltage V,    |  |  |
| 137,138 | EPP | Secondary positive active energy   | Float       | R           | The unit of current A, active power                                     |  |  |
| 139,140 | EPN | Secondary opposite active energy   | Float       | R           | unit KW,reactive power unit Kvar, apparent power unit KVA, the unit     |  |  |
| 141,142 | EQP | Secondary positive reactive energy | Float       | R           | of frequency Hz.                                                        |  |  |
| 143,144 | EQN | Secondary opposite reactive energy | Float       | R           |                                                                         |  |  |

# Note: Description of data format

Data type "float": four-byte floating data, apply IEEE-754 standard. The level code and mantissa express the magnitude of number. The description according to byte is as following:



Sign bit: SIGN=0 is poative, SIGN=1 is oppsite;

Exponent part: E=Exponent part-126;

Mantissa parts: M = mantissa parts make up the highest bit is 1:

Data results: REAL=SIGN×2E×M/(256×65536).

# Chapter 6. Switch value module

The instrument offers 4 channels switch value input function and 4 channel opto-couple relay's switch value output function. 4 channels switch value input adopt the way of dry node resistor switch signal input. When it is connected for external part, the module DI via instrument switch input will collect the external part, the module DI via instrument it is disconnected for the external part, the module DI via instrument switch input will collect the disconnecting information and display as 0. The switch value input module can not only collect and display the local switch information, but also can realize the remote transmitting function with the instrument's RS 485 digital connecting interface, it is function of "remote signalling" The switch value outpuf function of 4 channel opto-couple relay, can be used as the alarm caution, output function for protect controlling and so on. When the switch value is effective, relay output is opening and switch value is closed, the relay output will be closed also.

Electric parameter: Switch value input DI:connecting resistor R>100K $\Omega$ , Switch value output DO:AC 250V, 0.1A

Register:DIO information register:this register show the status information for 4 channel switch value and 4 channel switch value output.

| DIO Register | BIT7 | віт6 | BIT5 | BIT4 | ВІТ3 | BIT2 | BIT1 | BIT0 |
|--------------|------|------|------|------|------|------|------|------|
| Switch port  | DO4  | DO3  | DO2  | DO1  | DI4  | DI3  | DI2  | DI1  |
| Reposition   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

The low 4 byte of the DIO register (BIT3, BIT2, BIT1, BIT0) is the status information for switch value input. If the register display as 0000 0101, it means the channel DI3 and DI1 for switch value input is closed; channel Di4 and DI2 is cut off.

The high 4 byte of the DIO register (BIT7,BIT6,BIT5,BIT4) is the status information for switch value output. If the register display as 1101 000, it means connect with channel DO4, DO3 and DO1; disconnect with channel DO2. The DIO information can be displayed on the LCD screen of the instrument.

#### 6.1 Examples

#### 6.1.1Switch value input function:

The switch module has the collecting function for 4 channels switch input. When collecting is inputed the signal, the instrument's LCD screen may display. With the RS 485 interface, the users can transmitting the switch register's information to the remote computer's terminal. The picture on the right shows: Channel 1,2 and 4 is on: Channel 3 is off.



## 6.1.2 Switch value output function:

The picture shows the channel 1 and 4 is off; channel 2 and 3 is on. The another function of the switch value output module is off-limited alarm output. Set the range for the parameters. When the parameter is off-limited the range, the corresponding switch value output interface is open, the screen will display. When the signal is in the range, the screen will not display.

The internal DOSI(3 bytes) of the instrument is the switch value setting register. Input the parameter via the instrument's connecting interface, the users can realize the alarm setting. Or the users can set the alarm target and alarm data directly via the key-pressing on the plate.

The setting for switch value parameters DOI can also be realized via key programming. In the programming operation, menu DOSI item's parameter is the corresponding DOI parameter. See the right picture: The first line showing DO-1 means the item setted is switch value output module 1; Line 2 showing 0007 is the alarm item, 7: IA low alarm. Line 3 showing 2000 means the area of the alarm, when the IA<2000, DO1 output alarm signal, as relay is open.



Switch value output and analog quantity output electric quantity parallel table

|                            |                                             | <u> </u>                                     |                                        |                                        |  |
|----------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|--|
|                            | Switch va                                   | lue output                                   | analog quantity output                 |                                        |  |
| Project                    | Corresponding<br>parameter<br>(lower alarm) | Corresponding<br>parameter<br>(higher alarm) | Corresponding<br>parameter<br>(0~20mA) | Corresponding<br>parameter<br>(4~20mA) |  |
| UA(A-phase voltage)        | 1                                           | 129                                          | 1                                      | 129                                    |  |
| UB(B-phase voltage)        | 2                                           | 130                                          | 2                                      | 130                                    |  |
| Uc(C-phase voltage)        | 3                                           | 131                                          | 3                                      | 131                                    |  |
| UAB(AB-line voltage)       | 4                                           | 132                                          | 4                                      | 132                                    |  |
| UBC(BC-line voltage)       | 5                                           | 133                                          | 5                                      | 133                                    |  |
| UCA(CA-line voltage)       | 6                                           | 134                                          | 6                                      | 134                                    |  |
| IA(A-phase current)        | 7                                           | 135                                          | 7                                      | 135                                    |  |
| IB(B-phase current)        | 8                                           | 136                                          | 8                                      | 136                                    |  |
| Ic(C-phase current)        | 9                                           | 137                                          | 9                                      | 137                                    |  |
| PA(A-phase active power)   | 10                                          | 138                                          | 10                                     | 138                                    |  |
| PB(B-phase active power)   | 11                                          | 139                                          | 11                                     | 139                                    |  |
| Pc(C-phase active power)   | 12                                          | 140                                          | 12                                     | 140                                    |  |
| Ps(Total active power)     | 13                                          | 141                                          | 13                                     | 141                                    |  |
| QA(A-phase reactive power) | 14                                          | 142                                          | 14                                     | 142                                    |  |
| QB(B-phase reactive power) | 15                                          | 143                                          | 15                                     | 143                                    |  |
| Qc(C-phase reactive power) | 16                                          | 144                                          | 16                                     | 144                                    |  |
| Qs(Total reactive power)   | 17                                          | 145                                          | 17                                     | 145                                    |  |
| PFA(A-phase power factor)  | 18                                          | 146                                          | 18                                     | 146                                    |  |
| PFB(B-phase power factor)  | 19                                          | 147                                          | 19                                     | 147                                    |  |
| PFc(C-phase power factor)  | 20                                          | 148                                          | 20                                     | 148                                    |  |
| PFs(Total power factor)    | 21                                          | 149                                          | 21                                     | 149                                    |  |
| SA(A-phase apparent power) | 22                                          | 150                                          | 22                                     | 150                                    |  |
| SB(B-phase apparent power) | 23                                          | 151                                          | 23                                     | 151                                    |  |
| Sc(C-phase apparent power) | 24                                          | 152                                          | 24                                     | 152                                    |  |
| Ss(Total apparent power)   | 25                                          | 153                                          | 25                                     | 153                                    |  |
| F(frequency)               | 26                                          | 154                                          | 26                                     | 154                                    |  |
|                            |                                             |                                              |                                        |                                        |  |

#### Alarm parameter calculation method:

Numerical calculation of electrical parameters of alarm limits: take the range's highest value 4 number, get a 4 bit integer ratio. The alarmValue and range of

values is equal to a set value and reference value ratio

# Set value=

# Alarm value×Reference value Range value

If the instrument's parameters are 400V, 800A/5A

|                         |                    | _              |                    | Programmin             | g parameters |
|-------------------------|--------------------|----------------|--------------------|------------------------|--------------|
| Setting<br>requirements | Alarm<br>condition | Range<br>value | Reference<br>value | Electricity parameters | Set value    |
|                         | UA>400V            |                |                    | 129                    | 4000         |
| Voltage<br>alarm        | UB>430V            | 400            | 4000               | 130                    | 4300         |
|                         | UC<80V             |                |                    | 3                      | 800          |
|                         | IA>800A            |                | 8000               | 135                    | 8000         |
| Current<br>alarm        | IB<400A            | 800            |                    | 8                      | 4000         |
|                         | IC<70A             |                |                    | 9                      | 7000         |
|                         | PA>320KW           | 320K           | 3200               | 138                    | 3200         |
| Power<br>alarm          | PS>980KW           | 960K           | 9600               | 141                    | 9800         |
|                         | PS<560KW           | 9001           | 9600               | 13                     | 5600         |
|                         | PFA>0. 866         |                |                    | 146                    | 866          |
| Power factor            | PFS>0.9            | 1              | 1000               | 149                    | 900          |
|                         | PFS<0.5            |                |                    | 21                     | 500          |

# Chapter 7. Analog transmitting output module

The instrument can offer the function of four-channel analog transmitting output. Each channel can choose to set any of the 26 parameters, with the instrument's function for analog transmitting output module, to reach the function of parameter's analog transmitting output(0-20mA/4-20mA). The corresponding relation can be set at random

# 7.1 Parameter:output 0-20mA,4-20mA,class:0.5

Overload:120% effective output, the maximum current:24mA, the maximum volt:16V Load:Rmax=4000

## 7.2 Application example

For 10KV/100V,400A/5A instrument settings: AO1-UA:0~10KV/4~20mA; AO2-IA: 0~400A/4~20mA; AO3-PS:0~12MW/0~20mA; AO4-QS:0~12MVar/0~20mA;

| Classification              | Analog transmitting | Control word ( high byte first ) |              |       |  |  |
|-----------------------------|---------------------|----------------------------------|--------------|-------|--|--|
| Classification              | output              | BYTE2                            | BYTE1        | BYTE0 |  |  |
| Analog transmitting output1 | UA:4~20mA           | 128+1=129                        | 1000(03HE8H) |       |  |  |
| Analog transmitting output2 | IA:4~20mA           | 128+7=135                        | 4000(0FHA0H) |       |  |  |
| Analog transmitting output3 | PS:0~20mA           | 13                               | 1200(04HB0H) |       |  |  |
| Analog transmitting output4 | QS:0~20mA           | 17                               | 1200(04HB0H) |       |  |  |

The electrical parameters of transmitting output values are calculated from range: the top 4 bits of the number, a 4 bit integer ratio. Then the transmitting value and range value ratio is equal to the set value and reference value ratio.

Note: when the transmission value errors, modify the corresponding set value.

If the instrument's parameters are 400V, 800A/5A

|                         |                        |                |                    | Programmin             | g parameters |
|-------------------------|------------------------|----------------|--------------------|------------------------|--------------|
| Setting<br>requirements | Transmission condition | Range<br>value | Reference<br>value | Electricity parameters | Set value    |
|                         | UA:0~400V/4~20mA       |                |                    | 129                    | 4000         |
| Voltage<br>transmitting | UB:0~420V/4~20mA       |                | 4000               | 130                    | 4300         |
|                         | UC:0~350V/0~20mA       |                |                    | 3                      | 3500         |
| _                       | IA:0~800A/0~20mA       | 800            | 8000               | 7                      | 8000         |
| Current<br>transmitting | IA:0~800A/4~20mA       |                |                    | 135                    | 8000         |
|                         | IB:0~900A/4~20mA       |                |                    | 136                    | 9000         |
| Power                   | PA:0~320KW/0~20mA      | 320K           | 3200               | 10                     | 3200         |
| transmitting            | PS:0~960KW/4~20mA      | 960K           | 9600               | 141                    | 9800         |
| Power factor            | PFA:0~1/0~20mA         | 1              | 1000               | 18                     | 1000         |
| transmitting            | PFS:0~0.9/4~20mA       | '              | 1000               | 19                     | 900          |

The users may set the parameters for the transmitting output via the plate keypressing setting. In the programming operation, AOSI menu item is the transmitting module parameter setting parameter. See the right picture for parameter setting, programming item AO-1:transmitting output channel 1;0129=128+1:choose the UA as 4-20mA as the transmitting output, and the corresponding volt for 20mA is 10KV, setting as 1000.

For example, in the internet 10KV/100V, the transmitting output function is finished as:transmitting output loop 1, UA:0-10KV/4-20mA.

